Isoform-Specific Regulation and Localization of the Coxsackie and Adenovirus Receptor in Human Airway Epithelia
نویسندگان
چکیده
Adenovirus is an important respiratory pathogen. Adenovirus fiber from most serotypes co-opts the Coxsackie-Adenovirus Receptor (CAR) to bind and enter cells. However, CAR is a cell adhesion molecule localized on the basolateral membrane of polarized epithelia. Separation from the lumen of the airways by tight junctions renders airway epithelia resistant to inhaled adenovirus infection. Although a role for CAR in viral spread and egress has been established, the mechanism of initial respiratory infection remains controversial. CAR exists in several protein isoforms including two transmembrane isoforms that differ only at the carboxy-terminus (CAR(Ex7) and CAR(Ex8)). We found low-level expression of the CAR(Ex8) isoform in well-differentiated human airway epithelia. Surprisingly, in contrast to CAR(Ex7), CAR(Ex8) localizes to the apical membrane of epithelia where it augments adenovirus infection. Interestingly, despite sharing a similar class of PDZ-binding domain with CAR(Ex7), CAR(Ex8) differentially interacts with PICK1, PSD-95, and MAGI-1b. MAGI-1b appears to stoichiometrically regulate the degradation of CAR(Ex8) providing a potential mechanism for the apical localization of CAR(Ex8) in airway epithelial. In summary, apical localization of CAR(Ex8) may be responsible for initiation of respiratory adenoviral infections and this localization appears to be regulated by interactions with PDZ-domain containing proteins.
منابع مشابه
Apical localization of the coxsackie-adenovirus receptor by glycosyl-phosphatidylinositol modification is sufficient for adenovirus-mediated gene transfer through the apical surface of human airway epithelia.
In well-differentiated human airway epithelia, the coxsackie B and adenovirus type 2 and 5 receptor (CAR) resides primarily on the basolateral membrane. This location may explain the observation that gene transfer is inefficient when adenovirus vectors are applied to the apical surface. To further test this hypothesis and to investigate requirements and barriers to apical gene transfer to diffe...
متن کاملAdenovirus Entry From the Apical Surface of Polarized Epithelia Is Facilitated by the Host Innate Immune Response
Prevention of viral-induced respiratory disease begins with an understanding of the factors that increase or decrease susceptibility to viral infection. The primary receptor for most adenoviruses is the coxsackievirus and adenovirus receptor (CAR), a cell-cell adhesion protein normally localized at the basolateral surface of polarized epithelia and involved in neutrophil transepithelial migrati...
متن کاملMultiple regions within the coxsackievirus and adenovirus receptor cytoplasmic domain are required for basolateral sorting.
The coxsackievirus and adenovirus receptor (CAR) mediates attachment and infection by coxsackie B viruses and many adenoviruses. In human airway epithelia, as well as in transfected Madin-Darby canine kidney cells, CAR is expressed exclusively on the basolateral surface. Variants of CAR that lack the cytoplasmic domain or are attached to the cell membrane by a glycosylphosphatidylinositol ancho...
متن کاملA role for the PDZ-binding domain of the coxsackie B virus and adenovirus receptor (CAR) in cell adhesion and growth.
The coxsackie and adenovirus receptor (CAR) plays a role in viral infection, maintenance of the junction adhesion complex in polarized epithelia, and modulation of cellular growth properties. As a viral receptor, the C-terminus appears to play no role indicating that the major function of CAR is to tether the virus to the cell. By contrast, the C-terminus is known to play a role in cellular loc...
متن کاملLack of high affinity fiber receptor activity explains the resistance of ciliated airway epithelia to adenovirus infection.
Although recombinant adenoviruses are attractive vectors for gene transfer to airway epithelia, they have proven to be relatively inefficient. To investigate the mechanisms of adenovirus-mediated gene transfer to airway epithelia, we examined the role of adenovirus fiber and penton base, the two proteins involved in attachment to and entry of virus into the cell. We used human airway epithelia ...
متن کامل